除了一和它本身之外不能被其他整数整除的数。1既不是质数也不是合数。
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。因为合数是由若干个质数相乘而得来的,所以,没有质数就没有合数,由此可见素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理每一个比1大的数(即每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数的在乘积中的顺序,那么写出来的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。
一整数被另一整数整除,后者即是前者的因数。
例:6÷2=3 2和3就是6的因数。
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
约数与因数
约数和因数的区别有三点:
1、数域不同。约数只能是自然数,而因数可以是任何数。
2、关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×2=16,8和2都是积16的因数,离开乘积算式就没有因数了。
3、大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。
一般情况下,约数等于因数。
定义:两个或多个自然数公有的因数叫做它们的公因数。
最大公因数:两个数共有的因数里最大的那一个。
其它:1是所有非零自然数的公因数。
两个成倍数关系的自然数之间,小的那一个数就是这两个数的最大公因数。
1)一个自然数最小的因数是1,最大的是它本身。
2)1是所有非零自然数的公因数。
望采纳,谢谢!偶数中只有2是质数,而且是所有质数中最小的一个。除2以外所有的偶数都是合数,除2以外所有的质数都是奇数。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。
千航国际 |
国际空运 |
国际海运 |
国际快递 |
跨境铁路 |
多式联运 |