起运港:
目的港:
国际空运
国际海运
国际快递

傅里叶变换(傅里叶变换的条件)

 NEWS     |      2022-05-10 17:05

傅里叶变换

先把at当成一个整体u,利用公式求傅里叶变换,在公式的后面的e^(-jwt),转换成含有u的式子,得出结果之后化简一下,你要的答案就出来了您对于傅里叶变换恐怕并不十分理解 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度 对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示 已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相订丁斥股俪噶筹拴船茎同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。 傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。 我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。 参考资料:原创

什么叫傅立叶变换?

中文译名 transformée de fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 概要介绍 * 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 c. c. lin & l. a. segel, mathematics applied to deterministic problems in the natural sciences, macmillan inc., new york, 1974)。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(fft)). 基本性质 线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符; 频移性质 若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=f(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体f表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt; 微分关系 若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal[f^{(k)}(x)]存在,则\mathcal[f^{(k)}(x)]=(-i \omega)^ \mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。 卷积特性 若函数f \left( x\right )及g \left( x\right )都在(-\infty,+\infty)上绝对可积,则卷积函数f*g=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[f*g]=\mathcal[f]\cdot\mathcal[g] 。卷积性质的逆形式为\mathcal^[f(\omega)g(\omega)]=\mathcal^[f(\omega)]*\mathcal^[g(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 parseval定理 若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |f(\omega)|^d\omega 。其中 f(ω) 是 f(x) 的傅里叶变换。 傅里叶变换的不同变种 连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[f(\omega)] = \frac{\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(\omega) e^{i\omega t}\,d\omega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数f(ω)的积分。反过来,其正变换恰好是将频率域的函数f(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数f(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(fractional fourier transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,f(−ω) = f(ω)*成立.傅里叶变换是以法国数学家傅里叶命名的积分变换。它将函数表示成一族具有不同幅值的正弦函数的和或者积分。傅里叶变换在物理学、数论、信号处理、概率论等等领域都有着广泛的应用。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

千航国际
国际空运
国际海运
国际快递
跨境铁路
多式联运
起始地 目的地 45+ 100 300 详情
深圳 迪拜 30 25 20 详情
广州 南非 26 22 16 详情
上海 巴西 37 28 23 详情
宁波 欧洲 37 27 23 详情
香港 南亚 30 27 25 详情

在线咨询-给我们留言