当两个比a:b和c:d的值相等时,称这四个量a 、b和c、d成比例。记为a:b = c:d 。
有正比例和反比例:
正比例:(例子)
路程和时间是两种相关联的量,时间变化,路程也随着变化.当路程对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,形式的路程和时间是成正比例的量.
反比例:(例子)
单价和数量是两种相关联的量,单价变化,数量也随着变化,当单价和对应的量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比里的量.
比例有内项和外项,判断他是不是比例的时候,就看他两个内项的积与两个外向的积是否相同就可以了。。
好累啊。。
打了好久。。
希望对你有用咯!黄金比例 黄金比例是一个定义为 (√5-1)/2 的无理数。 所被运用到的层面相当的广阔:数学、物理、建筑、美术.音乐以及人体。 黄金比例的独特性质首先被应用在分割一条直线上。如果有一条直线的总长度为黄金比例的分母加分子的单位长,若我们把它分割为两半,长的为分子单位长度,短的为分母单位长度 则长线长度与短线长度的比值即为黄金比例。 黄金分割 黄金分割也叫“黄金律”、“中外比”、“中末比”等。就是把一条已知线段分成两部分,使其中一部分是另一部分与全部的比例中项,这样的分割称为“黄金分割”。从古希腊到19世纪,人们都认为这种分割法在艺术造型中具有美学价值,故称之为“黄金分割”。 古希腊的毕达格拉斯学派对此已有研究。到中世纪,意大利数学家巴巧利在1509年出版《神圣比例》一书中也论述了中外比,德国刻卜勒称之为“神圣分割”,使分割蒙上了神秘色彩。 数学家法布兰斯在13世纪写了一本书,关于一些奇异数字的组合。这些奇异数字的组合是1、1、2、3、5、8、13、21、34、55、89、144、233┅┅ 任何一个数字都是前面两数字的总和 2=1+1、3=2+1、5=3+2、8=5+3┅┅,如此类推。有人说这些数字是他从研究金字塔所得出。金字塔和上列奇异数字息息相关。金字塔的几何形状有五个面,八个边,总数为十三个层面。由任何一边看入去,都可以看到三个层面。金字塔的长度为5813寸(5-8-13),而高底和底面百分比率是0.618,那即是上述神秘数字的任何两个连续的比率,譬如55/89=0.618,89/144=0.618,144/233=0.618。 另外,一个金字塔五角塔的任何一边长度都等于这个五角型对角线(diagonal)的0.618。还有,底部四个边的总数是36524.22寸,这个数字等于光年的一百倍! 这组数字十分有趣。0.618的倒数是1.618。譬如144/89=1.168、233/144=1.168,而1.618-0.618=就等于1。 另外有人研究过向日葵,发现向日葵花有89个花辫,55个朝一方,34个朝向另一方。 神秘?不错,这组数字就叫做神秘数字。而0.618,1.618就叫做黄金分割率(golden section)。比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。
千航国际 |
国际空运 |
国际海运 |
国际快递 |
跨境铁路 |
多式联运 |